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Deconstruction of Gravity

C. Deffayet1,2,4 and J. Mourad1,3

We review how one can construct a deconstructed gravity by a transverse latticification
of 5D General Relativity. The obtained theory is a multigravity theory, with link fields
that are explicitly constructed out of the metric. We also discuss the spectrum of the
theory at the level of the linearized theory.
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1. INTRODUCTION

An interesting procedure has recently been proposed to obtain from a five-
dimensional Yang–Mills theory a four-dimensional theory which approaches the
five-dimensional one in the infrared and which has a finite number of modes
(Arkani-Hamed et al., 2001; Hill et al., 2001). The key point in the approach is
to replace the extra component of the vector field by bifundamental scalars which
can be viewed as arising from the latticized Wilson line along the fifth dimension.
A similar construction for gravity would be highly desirable, for many obvious
reasons. If one follows the same path as for Yang–Mills theories (Arkani-Hamed
et al., 2003; Arkani-Hamed and Schwartz, 2003; Schwartz, 2003,?), the sought for
deconstructed gravity would be likely to look like some type of multigravity the-
ory, and indeed those type of theories are known to suffer from various pathologies
related to those of the Pauli–Fierz theory for a single massive graviton (Fierz and
Pauli, 1939; Boulware and Deser, 1972; Isham et al., 1971; Aragone and Chela-
Flores, 1972; Salam and Strathdee, 1977; Isham and Storey, 1978; Chamseddine,
2003; Cutler and Wald, 1987; Wald, 1987; Boulanger et al., 2001; Damour and
Kogan, 2002; Damour et al., 2002, 2003; Dolan and Duff, 1984; Aulakh and
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Sahdev, 1985; Nappi and Witten, 1989; Reuter, 1988). In this work we summarize
some results obtained elsewhere by Deffayet and Mourad (2004a) (see also Def-
fayet and Mourad, 2004b) presenting a construction for five-dimensional gravity,
analogous to the one done for Yang–Mills theories. We will also discuss the ex-
tend to which the consistency of the higher dimensional theory descends to the
discretized version.

Let us then first review the deconstruction of gauge theories (Arkani-
Hamed et al., 2001; Hill et al., 2001). Consider a 5D non-Abelian gauge field
A = Aa

Ata dxA ≡ Aµ dxµ + A5dy with gauge group, e.g., SO(M). Under a y-
dependent gauge transformation the transformation rules are

A′ = uAu−1 − u du−1, (1)

where u is an element of SO(M). These reduce to the 4D y-dependent transfor-
mations for Aµdxµ, and A5, which is a scalar viewed from 4D, has the following
transformation

A′
5 = uA5u

−1 − u∂yu
−1, (2)

which gives for an infinitesimal transformation

δA5 = ∂yε − [A5, ε]. (3)

It is very convenient when discretizing the y dimension to replace A5 by the
Wilson line (Kogut, 1983; Wilson, 1974)

W (y ′, y) = Pe
∫ y′
y

A5 dy
, (4)

which transforms linearly as

W ′(y ′, y) = u(y ′)W (y ′, y)u−1(y). (5)

The lattice version of the gauge theory is now easily obtained: one has N sites, on
each site a gauge field with a corresponding gauge group SO(M)i and on each link
between neighboring sites a scalar W (yi, yi+1) transforming in the bifundamental
of the gauge groups SO(M)i × SO(M)i+1. One can then write an effective action
for the gauge fields and the scalars. The continuum limit is recovered when the
number of sites goes to infinity and a goes to zero; the vacuum expectation value
of the scalars is then the identity:

W (i, i + 1) = 1 − aA5(y) + · · · , (6)

where a is the lattice spacing. In the broken phase one has a massless gauge
boson corresponding to the diagonal subgroup and a collection of massive spin
one particles with masses

mk = a−1 sin
kπ

N
, k = 1, . . . N − 1. (7)
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These reproduce, in the infrared, the Kaluza–Klein spectrum of the first
modes when the radius is given by aN . So, with this procedure, one is able, from a
collection of 4D theories, to get a theory which looks as a 5D theory in the infrared
(Arkani-Hamed et al., 2001; Hill et al., 2001).

2. DECONSTRUCTION OF GRAVITY

Let us now turn to gravity, with the aim of reaching the same goal following
the same path. For this purpose, we start then from the 5D Einstein–Hilbert Action,
rewritten à la ADM (Arnowitt et al., 1962; Wald, 1984) as

M3
(5)

∫
d4x dy

√−gN {R + KµνKαβ(gµνgαβ − gµαgνβ)}, (8)

where Kµν is the extrinsic curvature of surfaces �y :

Kµν = 1

2N (g′
µν − DµNν − DνNµ). (9)

Here Dµ is the covariant derivative associated with the induced metric gµν and
a prime denotes an ordinary derivative with respect to y. Note that we chose the
surfaces �y to be timelike. We then consider the gauge transformations generated
by the vector fields

ξ̃ = ξA∂A = ξµ∂µ + ξ 5∂y = ξ + ξ 5∂y. (10)

They act on the metric as

δgµν = Lξ gµν, (11)

δN̄ = [Dy, ξ ] = ∂yξ − [N̄, ξ ], (12)

δN = ξ (N ), (13)

where we have defined the shift vector by

N̄ = Nµ∂µ, (14)

and the covariant derivative, Dy , by

Dy = ∂y − N̄ . (15)

Then, under y-dependent four-dimensional diffeomorphisms, that is for ξ 5 = 0,
we have

δgµν = Lξ gµν, (16)

δN̄ = [Dy, ξ ] = ∂yξ − [N̄, ξ ], (17)

δN = ξ (N ). (18)
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The transformation of gµν and N is as expected the one of a 4D metric and scalar
respectively. The transformation of N̄ has however an additional term with respect
to the usual one characterizing the transformation of a vector. This new term is
reminiscent of the inhomogeneous term contributing to the transformation of a
gauge field: the Lie bracket in (17) is replaced in (3) by a matrix commutator.
Indeed this analogy justifies the covariant derivative name we gave to Dy : suppose
for example that φ is a 5D scalar and consider ∂yφ, it is not a scalar under a
diffeomorphism generated by ξ

δ∂yφ = ∂yξ (φ) = ξ (∂yφ) + (∂yξ )(φ), (19)

whereas Dyφ is indeed a scalar

δDyφ = δ∂yφ − (δN̄ )(φ) − N̄ (δφ) = ξ (Dyφ), (20)

where we used the transformation rule of N̄ (17). Similarly if T is a tensor then
LDy

T is also a tensor under 4D y-dependent diffeomorphisms. One can thus view
the role of N̄ as rendering possible the formulation of an action invariant under
y-dependent 4D diffeomorphisms.

We next consider diffeomorphisms along the fifth dimension. In fact it is
more convenient to consider diffeomorphisms generated by Dy , that is ξ̃ = ζDy ,
with ζ depending on y as well as on x. A short calculation gives the following
rules

δgµν = ζLDy
gµν, δN = Dy(ζN ), (21)

δNµ = N 2gµν∂νζ. (22)

Let us now built the analogous of the Wilson lines (4) for gravity. Exploiting
the analogy between N̄ and A5, we consider

W (y ′, y) = P exp
∫ y ′

y

dzN̄, (23)

or more explicitly

Wy ′,y = 1 +
∫ y ′

y

dzNµ(z)∂µ +
∫ y ′

y

dz1N
µ1 (z1)∂µ1

∫ z1

y

dz2N
µ2 (z2)∂µ2 + ...

+
∫ y ′

y

dz1N
µ1 (z1)∂µ1

∫ z1

y

dz2N
µ2 (z2)∂µ2 ...

∫ zp−1

y

dzpNµp (zp)∂µp
+ ...

(24)

Now W (y ′, y) defines a mapping from functions (scalar fields) on �y to
functions (scalar fields) on �y ′ . Explicitly, let φ(x) be a scalar field defined on the
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hypersurface �y0 and consider

φy = W (y, y0)(φ). (25)

Then φy verifies the equation ∂yφy = N̄y(φy) and is subject to the boundary
condition φy0 = φ. Let ξ (y) generate a y-dependent 4D diffeomorphism then
from the transformation of N̄ given in (17) we get

δW (y ′, y) = ξ (y ′)W (y ′, y) − W (y ′, y)ξ (y), (26)

which implies that indeed φy defined in (25) transforms under diffeomorphisms
as δφy = ξ (y)(φy) if φ transforms as δφ = ξ (y0)(φ). A convenient and useful way
of writing (25) is

φy = φ ◦ X(y, y0), (27)

where X(y, y0) is a mapping from the manifold �y to �y0 generated by N̄ , that is

∂yX
µ(y, y0; x) = Nµ

y (x), Xµ(y0, y0; x) = xµ, (28)

which can be written as

Xµ(y, y0; x) = W (y, y0)(xµ), (29)

= xµ +
∫ y

y0

dzNµ(z; x) +
∫ y

y0

dz1N
ν(z1; x)

∫ z1

y0

∂ν(Nµ(z2; x)) + . . .

(30)

the right hand side of the first line being understood as the action of the W on the
function xµ.

It is possible to extend W so that it maps tensors of arbitrary rank on �y to
tensors on �y ′ . This is done with the help of the Lie derivative as follows

W (y ′, y) = P exp
∫ y ′

y

dzLN̄ . (31)

It reduces to the previous expression (23) when acting on scalars. The Leibniz
rule for the Lie derivative results in a simple action of W on the direct product of
tensor:

W (y ′, y)(T1 ⊗ T2) = [W (y ′, y)(T1)] ⊗ [W (y ′, y)(T2)], (32)

where T1 and T2 are arbitrary tensors on �y . The commutation of the Lie derivative
and the exterior derivative when acting on forms translates also to the simple
property

d[W (y ′, y)(ωy)] = W (y ′, y)(dωy), (33)
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where ωy is an arbitrary form defined on �y . The geometric interpretation of the
map W goes as follows: when y and y ′ are infinitesimally close, W maps the
point P with coordinates x on �y to the point Q with coordinates xµ + δyNµ

on �y+δy .
We are now in a position of performing the discretization of the Einstein–

Hilbert action along the y-direction. We replace y by ia with i an integer and a

the lattice spacing. The fields are thus the metric on each site g(i)
µν , the lapse fields

N (i) and the Wilson line W (i, i + 1) which, as in the gauge theory, replaces the
shift vector. The y derivative appears in the continuum in the combination Dy .
The Lie derivative of a tensor field with respect to Dy can be written as

LDy
Ty = lim

δy→0

W (y, y + δy)Ty+δy − Ty

δy
. (34)

From this we see that the simplest discrete counterpart of the Lie derivative along
Dy is


LTi = W (i, i + 1)Ti+1 − Ti

a
. (35)

It is now immediate to get the discretized Einstein–Hilbert action from (8)

S = M3
(5)a

∑
i

∫
d4x

√−giNi

×
[
R(gi) + 1

4N 2
i

(
Lgi)µν(
Lgi)αβ

(
g

µν

i g
αβ

i − g
µα

i g
νβ

i

)]
(36)

The action is invariant under the product of all diffeomorphism groups associated
to the points of the lattice. Under such a transformation generated by ξi , the
different fields transform as

δgi = Lξi
gi, δNi = ξi(Ni),

δW (i, i + 1) = ξiW (i, i + 1) − W (i, i + 1)ξi+1. (37)

These reduce in the continuum limit to (16), (18) and (26). The explicit ex-
pression of the components of W (i, i + 1)Ti+1 can be easily written down with
the help of Xµ(i, i + 1; x), a mapping between the manifolds at i and i + 1
which is the discrete counterpart of Xµ(y, y0; x) defined in (30). In fact, we
have

[W (i, i + 1)Ti+1]µ1,...µr
(x) = Ti+1(Xµ(i, i + 1; x))ν1,...νr

∂µ1X
ν1 . . . ∂µr

Xνr . (38)

The variation of the action with respect to W (i, i + 1) amounts to a variation with
respect to the mappings Xµ(i, i + 1; x).

Notice that the action is not the most general action with the symmetries (37)
since it descends from a 5D theory which had also a reparametrization invariance
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along the y direction. This will have very important consequences as we will now
discuss.

3. SPECTRUM OF THE ACTION

We are thus led to consider multigravity theories such as (36). Let us first
make a naive counting of the degrees of freedom (d.o.f.) that arise from a generic
action with the symmetries we explicitly implemented in the action (36), with a
finite number, N , of sites. We started with N × 10 d.o.f. in the 4D metrics, N lapse
fields and (N − 1) × 4 d.o.f. in the mappings W (i, i + 1). The total number of
d.o.f. is thus 15 × N − 4. The action has local invariances with 4N parameters due
to the 4D diffeomorphism on the N manifolds, this reduces the number of d.o.f. to
(15 × N − 4) − (4 + 4)N = 7N − 4. Out of these we expect to have one graviton
(2 d.o.f.) and N − 1 massive spin 2 particles (5N-5 d.o.f.). The remaining degrees
of freedom are expected to be shared by a number of zero modes (scalars and
vectors), which does not depend on N but depends on the boundary conditions, as
well as a number of massive scalars. The latter number depends on N as 2N + c,
where c is a constant which depends on the boundary conditions but which does
not depend on N . These scalars are potentially pathologic, they may lead to
ghosts or tachyons. For a generic multigravity theory, ghosts and instabilities
do indeed appear (Aragone and Chela-Flores, 1972; Boulware and Deser, 1972;
Chamseddine, 2003; Damour et al., 2002, 2003; Damour and Kogan, 2002; Isham
et al., 1971; Isham and Storey, 1978; Salam and Strathdee, 1977). The higher
dimensional theory we started with, before discretization, does not have these
pathologies. It is thus possible that the action (36) inherited the consistency of the
continuum action. As we will now discuss, this is indeed the case at least to the
quadratic order in the fluctuations. We will show that the massive scalar modes
decouple at the quadratic level. This is due to an extra local symmetry which
removes 2N − 2 degrees of freedom. For that purpose, we first perform a Weyl
rescaling on the metric in (36) by defining the metrics γ (i)

µν and the scalars φ(i)

by g(i)
µν = exp(−φ(i)√

3
)γ (i)

µν , N (i) ≡ exp(φ(i)/
√

3). Then we expand the action around
the vacuum

γ (i)
µν = ηµν + 1

Mp

h(i)
µν, φ(i) = ϕ(i)

Mp

, Xµ(i, i + 1) = xµ + a

Mp

n
µ

(i), (39)

and keep the quadratic fluctuations in the fields. It turns out convenient to work
with a discrete Fourier transform of the fields. So for each fluctuation F(i) with
F(i+N) = F(i) we define F̂(k) by

F̂(k) =
∑

j

1√
N
F(j )e

−i2πjk/N . (40)
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The discretized quadratic action becomes∫
d4x

∑
k

1

4

{
∂ρĥ

µν

(k)∂σ ĥ
∗αβ

(k)

(
ηρσ ηµνηαβ − ηρσ ηµαηνβ + 2δσ

(νηµ)βδρ
α − ηµνδ

σ
β δρ

α

− ηαβδσ
ν δρ

µ

)}− 1

2

∑
k

∂µϕ̂(k)∂νϕ̂
∗(k)ηµν − 1

4

(
∂µn̂(0)

ν − ∂νn̂
(0)
µ

)(
∂µn̂ν(0) − ∂νn̂

µ

(0)

)

+
∑
k 	=0

1

a2
sin2 πk

N

{((
ĥ(k)

µν − ηµν√
3
ϕ̂(k)

)
− 2a∂(µn̂

(k)
ν)

ei2πk/N − 1

)((
ĥ

∗(k)
αβ − ηαβ√

3
ϕ̂∗(k)

)

− 2a∂(αn̂
∗(k)
β)

e−i2πk/N − 1

)
(ηµνηαβ − ηµαηνβ)

}
. (41)

The spin two and one content of the action is easily read from the action. We have
one massless spin 2 particle given by ĥ(0)

µν , one massless spin 1 particle n̂(0)
µ , one

massless scalar φ̂(0) and a tower of massive spin two particles with a spectrum
given by

m2
k = 1

a2
sin2 πk

N
. (42)

The action has the local invariances

δĥ(k)
µν = 2∂(µξ

(k)
ν) , δn̂(k)

µ = (ei2πk/N − 1)

a
ξ (k)
µ , (43)

which show that for k 	= 0, the n̂(k)
µ are Stuckelberg fields which are absorbed

by the massive spin 2 fields and do not propagate. The invariances (43) are the
linearized version of the invariance under 4D diffeomorphisms, they are expected
by construction. Less expected is the invariance under the local transformations

δĥ(k)
µν = ηµνf

(k), δϕ̂(k) =
√

3f (k), δn̂(k)
µ = a

1 − e−i2πk/N
∂µf (k), k 	= 0.

(44)
A generic multigravity theory with 4D diffeomorphism invariance on each site
realized does not possess this symmetry, which is inherited from the diffeomor-
phism invariance under the y reparametrizations in the continuum theory. In fact
the invariance under (44) eliminates, at the quadratic level, all except the massless,
scalar modes φ̂(k). It may also be used to eliminate the trace of the ĥ(k)

µν proving
the absence of ghostlike excitations. Associated to this local invariance there is
a constraint which removes one more set of scalars. At this point we note that
while the Pauli–Fierz action removes the ghost by hand, the above action removes
it with the aid of a local symmetry; in the gauge where ϕ̂(k) and n̂(k)

µ are zero the
action reduces to the Pauli–Fierz form with no extra propagating scalar. This can
be seen more explicitly by considering the scalar modes separately.
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An open question is whether this symmetry persists at cubic or higher level.
This seems unlikely but deserves further investigation.

ACKNOWLEDGMENTS

We thank E. Dudas, U. Ellwanger, and S. Pokorski for helpful discussions.
C.D. thanks the organizers of the 9th Peyresq meeting, and especially Diane and
Edgar Gunzig for their warm hospitality, as well as for the very nice organization
of the meeting.

REFERENCES

Aragone, C. and Chela-Flores, J. (1972). Properties of the f-g Theory. Nuovo Cimento A 10, 818.
Arkani-Hamed, N. and Schwartz, M. D. (2003). Discrete gravitational dimensions. arXiv:hep-

th/0302110.
Arkani-Hamed, N., Cohen, A. G., and Georgi, H. (2001). (De)constructing dimensions. Physical

Review Letters 86, 4757 [arXiv:hep-th/0104005].
Arkani-Hamed, N., Georgi, H., and Schwartz, M. D. (2003). Effective field theory for massive gravitons

and gravity in theory space. Annals of Physics 305, 96 [arXiv:hep-th/0210184].
Arnowitt, R., Deser, S., and Misner, C. W. (1962). The dynamics of general relativity. In Gravitation:

An Introduction to Current Research, L. Witten, ed., Wiley, New York.
Aulakh, C. S. and Sahdev, D. (1985). The infinite dimensional gauge structure of Kaluza-Klein theories.

1. D = 1 + 4. Physical Letters B 164, 293.
Boulanger, N., Damour, T., Gualtieri, L., and Henneaux, M. (2001). Inconsistency of interacting,

multigraviton theories. Nuclear Physics B 597, 127 [arXiv:hep-th/0007220].
Boulware, D. G. and Deser, S. (1972). Can gravitation have a finite range? Physical Review D 6, 3368.
Chamseddine, A. H. (2003). Spontaneous symmetry breaking for massive spin-2 interacting with

gravity. Physics Letters B 557, 247 [arXiv:hep-th/0301014].
Cutler, C. and Wald, R. M. (1987). A new type of gauge invariance for a collection of massless Spin-2

fields. 1. Existence and uniqueness. Classical Quantum Gravity 4, 1267.
Damour, T. and Kogan, I. I. (2002). Effective Lagrangians and universality classes of nonlinear

bigravity. Physical Review D 66, 104024 [arXiv:hep-th/0206042].
Damour, T., Kogan, I. I., and Papazoglou, A. (2002). Non-linear bigravity and cosmic acceleration.

Physical Review D 66, 104025 [arXiv:hep-th/0206044].
Damour, T., Kogan, I. I., and Papazoglou, A. (2003). Spherically symmetric spacetimes in massive

gravity. Physical Review D 67, 064009 [arXiv:hep-th/0212155].
Deffayet, C. and Mourad, J. (2004a). Solutions of multigravity theories and discretized brane worlds.

Classical Quantum Gravity 21, 1833 [arXiv:hep-th/0311125].
Deffayet, C. and Mourad, J. (2004b). Multigravity from a discrete extra dimension. Physical Letters B

589, 48 [arXiv:hep-th/0311124].
Dolan, L. and Duff, M. J. (1984). Kac-Moody symmetries of Kaluza-Klein theories. Physical Review

Letters 52, 14.
Fierz, M. and Pauli, W. (1939). On relativistic wave equations for particles of arbitrary spin in an

electromagnetic field. Proceedings of Royal Society of London A 173, 211.
Hill, C. T., Pokorski, S., and Wang, J. (2001). Gauge invariant effective Lagrangian for Kaluza-Klein

modes. Physical Review D 64, 105005 [arXiv:hep-th/0104035].
Isham, C. J. and Storey, D. (1978). Exact spherically symmetric classical solutions for the F-G theory

of gravity. Physical Review D 18, 1047.



1752 Deffayet and Mourad

Isham, C. J., Salam, A., and Strathdee, J. (1971). F-Dominance of gravity. Physical Review D 3, 867.
Kogut, J. B. (1983). A review of the lattice gauge theory approach to quantum chromodynamics.

Review of Modern Physics 55, 775.
Nappi, C. R. and Witten, L. (1989). Interacting lagrangian for massive spin two field. Physical Review

D 40, 1095.
Reuter, M. (1988). Consistent interaction for infinitely many massless spin two fields by dimensional

reduction. Physical Letters B 205, 511.
Salam, A. and Strathdee, J. (1977). A class of solutions for the strong gravity equations. Physical

Review D 16, 2668.
Schwartz, M. D. (2003). Constructing gravitational dimensions. Physical Review D 68, 024029
Wald, R. M. (1984). A new type of gauge invariance for a collection of massless Spin-2 fields. 2.

Geometrical interpretation. General Relativity, Chicago University Press, Chicago.
Wald, R. M. (1987). Classical Quantum Gravity 4, 1279.
Wilson, K. G. (1974). Confinement of quarks. Physical Review D 10, 2445.


